Syllabus
ACF-0902 CALCULO INTEGRAL
MPAR. SILVIA CANDELARIA ALMEYDA SAENZ
salmeyda@itescam.edu.mx
Semestre | Horas Teoría | Horas Práctica | Créditos | Clasificación |
3 | 3 | 2 | 5 |
Prerrequisitos |
Usar eficientemente la calculadora, evaluar funciones transcendentes, despejar el argumento de una función, dominar algebra, graficar y derivar funciones trigonometricas y exponenciales. |
Competencias | Atributos de Ingeniería |
Comprende los dos teoremas fundamentales del cálculo para establecer la relación entre cálculo diferencial y cálculo integral | Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería | Aplica los teoremas y las propiedades de la integral para evaluar integrales definidas. | Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas | Identifica el método de integración más adecuado para resolver una integral indefinida | Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería | Utiliza las definiciones de integral y las técnicas de integración para la solución de problemas geométricos y aplicados en la ingeniería | Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas | Aplica series para aproximar la solución de integrales especiales | Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas |
Normatividad |
|
Materiales |
Calculadora cientifica, formularios. |
Bibliografía disponible en el Itescam | |||||
Título |
Autor |
Editorial |
Edición/Año |
Ejemplares |
|
Cálculo II : de varias variables / |
Larson, Ron |
McGraw-Hill, |
8a. / 2006. |
2 |
- |
Matemáticas 2 : cálculo integral / |
Zill, Dennis G. |
McGraw-Hill, |
2a. / 2015. |
5 |
- |
Cálculo integral : para cursos con enfoque por competencias / |
Morales Álvarez, Felícitas |
Pearson, |
2014. |
1 |
- |
Parámetros de Examen | ||
PARCIAL 1 | De la actividad 1.1.1 a la actividad 2.1.3 | |
PARCIAL 2 | De la actividad 3.1.1 a la actividad 4.1.3 |
Contenido (Unidad / Competencia / Actividad / Material de Aprendizaje) | |
1. Teorema fundamental del cálculo.
1.1. Comprende los dos teoremas fundamentales del cálculo para establecer la relación entre cálculo diferencial y cálculo integral 1.1.1. Realizar una linea del tiempo sobre el desarrollo histórico del cálculo integral ![]() ![]() 1.1.2. Calcular áreas aproximadas de funciones simples y calcular sumas de Riemann ![]() ![]() ![]() ![]() 1.2. Aplica los teoremas y las propiedades de la integral para evaluar integrales definidas. 1.2.1. Calcular integrales definidas diversas y asociar cada integral con su interpretación geométrica ![]() ![]() |
2. Métodos de integración e integral indefinida.
2.1. Identifica el método de integración más adecuado para resolver una integral indefinida 2.1.1. Encontrar la función primitiva de una función dada y graficar una familia de funciones considerando distintos valores de la constante de integración ![]() ![]() ![]() 2.1.2. Resolver integrales que no pueden resolverse de forma directa y seleccionar el método de solución más adecuado ![]() 2.1.3. Resolver integrales indefinidas utilizando TIC’s. ![]() |
3. Aplicaciones de la integral.
3.1. Utiliza las definiciones de integral y las técnicas de integración para la solución de problemas geométricos y aplicados en la ingeniería 3.1.1. Plantear la integral que resuelva el cálculo del área delimitada por más de dos funciones. ![]() ![]() 3.1.2. Calcular áreas con el uso de TIC’s ![]() ![]() ![]() 3.1.3. Investigar aplicaciones de la integral en asignaturas subsecuentes. ![]() ![]() |
4. Series.
4.1. Aplica series para aproximar la solución de integrales especiales 4.1.1. Investiga sobre situaciones reales donde aparecen las sucesiones ![]() ![]() 4.1.2. Resuelve ejercicios de sucesiones y series. ![]() ![]() 4.1.3. Representar funciones como una serie de Taylor usando TIC’s ![]() |
Prácticas de Laboratorio (20242025P) |
Fecha |
Hora |
Grupo |
Aula |
Práctica |
Descripción |
Cronogramas (20242025P) | |||
Grupo | Actividad | Fecha | Carrera |
Temas para Segunda Reevaluación |